Glosario Climatología y Meteorología / Término
El lanzamiento, el 1 de abril de 1960, del satélite TIROS-1 inauguraba la extensa relación de satélites de finalidad meteorológica que han contribuido al perfeccionamiento de la predicción atmosférica y a la mejora del conocimiento de los tiempos y climas mundiales. A pesar de algunos intentos previos (Vanguard 2, Explorer 6 y 7), el TIROS-1 fue el primer satélite enteramente concebido por la NASA para la observación del tiempo atmosférico. Comenzaba así la carrera espacial de los satélites meteorológicos que tendría continuidad en los años siguientes, por su menor coste de lanzamiento, con una serie de unidades de órbita polar gestionados por la administración estadounidense y, después, por soviéticos (Meteor), rusos (Meteor) y chinos (Feng-Yun). Un hecho crucial para los programas de observación remota de la atmósfera fue la aprobación por la Organización Meteorológica Mundial del Programa de Vigilancia Meteorológica Mundial, en 1963, dentro del cual la observación meteorológica desde satélites meteorológicos constituye una pieza básica. La vigilancia ininterrumpida del tiempo atmosférico exigía, sin embargo, un tipo diferente de satélite, cuya velocidad orbital estuviese exactamente sincronizada con la rotación de la Tierra, de manera que pudiera mantenerse constantemente en la vertical de un determinado punto de la superficie terrestre. Esta condición se consiguió con la construcción y puesta en órbita de los satélites de órbita geoestacionaria. Los primeros satélites con esta órbita fueron lanzados en 1966 y 1967 (serie ATS, Applications Technollogy Satellite) y proporcionaron las bases tecnológicas para la puesta en marcha de la serie SMS (1974 y 1975) y GOES (Geoestationay Operational Environmental Satellite), cuyo primer prototipo fue lanzado el 17 de mayo de 1974. En 1978 dos nuevos satélites geoestacionarios se pondrían en órbita: el primero, el satélite GMS japonés, conocido con el significativo nombre de “Himawari” o “Tornasol”, en julio de 1977; el segundo, el 23 de noviembre de 1977, el METEOSAT, gestionado por la Agencia Europea de Espacio (ESA). A ellos seguirían los satélites geoestacionarios de la Unión Soviética (GOMS), India y los más recientes de Rusia (Elektro) y China (FY-2).
Por su órbita se distinguen: a) satélites geoestacionarios, que se sitúan en órbita sobre el Ecuador (0º latitud) a distancia de 35.800 Km., fuera de la atmósfera, en el denominado "anillo de Clark"; a dicha altitud resulta, prácticamente, despreciable la atracción gravitatoria terrestre. Estos satélites poseen un movimiento de rotación uniforme en torno a su eje principal, orientado paralelamente al de rotación de la Tierra; de esta manera, completan su órbita en 24 horas, lo que les permite permanecer sobre el mismo punto del ecuador (de ahí su denominación, geo-estacionarios o geosíncronos). Por tanto, la velocidad angular de rotación del satélite coincide con la de la Tierra, es decir, 360º/24 h., y su sentido de rotación, como el de la Tierra, es de oeste a este. En consecuencia, los satélites meteorológicos geoestacionarios suministran imágenes de una misma área planetaria, al encontrarse siempre sobre el mismo punto con respecto a la Tierra. Este hecho permite que los satélites geoestacionarios capten y remitan muchas imágenes del área que cubren, es decir, que tienen una alta resolución temporal. Por contra, dada su distancia orbital, la resolución espacial es forzosamente baja y empeora conforme se aleja del nadir, o punto subsatélite en el Ecuador. Una desventaja de estos satélites es que observan la tierra como un disco y hacia los bordes esta visión resulta muy oblicua, perdiéndose mucho detalle en latitudes superiores a los 50º N y S; y b) satélites de órbita polar y helio-síncronos, que tienen una distancia orbital mucho menor, de ahí que fuesen los primeros en órbita a comienzos de los años sesenta, por razones técnicas y debido a los menores costes de lanzamiento. Se sitúan a una altitud entre 800-900 Km. de la Tierra y el calificativo de "polar" viene dado porque el satélite gira en un plano orbital que contiene los polos norte y sur. Algunos de ellos son, además, "helio-síncronos", a causa de que su plano orbital sigue el movimiento aparente del Sol, por lo que recorren todos los puntos de un mismo paralelo a una hora solar similar, sin importar las estaciones del año. Su período orbital, es decir, el tiempo empleado en dar una órbita completa dura, aproximadamente, 100 minutos. Los satélites de órbita polar tienen gran resolución espacial por la menor distancia de su órbita respecto a la superficie terrestre.
En la actualidad, la red de vigilancia meteorológica mundial está integrada por las unidades siguientes: a)satélites de órbita geoestacionaria: Meteosat 6 y 7 (EUMETSAT), GOES-E (8 y 10), GOES-W (9) (Estados Unidos), GMS-5 (Japón), Insat II-B (India), GOMS-N1 “Elektro” (Rusia) y FY-2 (Rep. Popular China); b) de órbita polar: NOAA 12 y 14 (Estados Unidos), Meteor 2-21 y 3-5 (Rusia) y FY-1C (Rep. Popular China). Y junto a ellos la serie de satélites de finalidad meteorológica incluidos en el programa militar del ejercito estadounidense (satélites DMSP).
Existen otros satélites cuya información resulta valiosa para los estudios atmosféricos; entre ellos, los de la serie NIMBUS, iniciada en 1964 y que, a partir del NIMBUS 7 (1978), transportan los radiómetros CZCS (Coastal Zone Colour Scaner), diseñado para el estudio de la superficie del mar y un espectrómetro para la medición de la capa de ozono y el TOMS (Total Ozone Mapping Spectrometer). Gran importancia revisten asimismo los satélites de finalidad climática ERBS (1984), equipado con radiómetros capaces de evaluar el balance de radiación y la cantidad de aerosoles y gases presentes en la estratosfera y TOPEX/POSEIDON (1992) americano con el objetivo de la exploración oceánica, entre otros incluidos en el programa multiestatal “Misión de la Tierra”
Los productos facilitados por un satélite meteorológico se presentan en soporte magnético (cintas o disquetes con información digital) o sobre papel (producto fotográfico). Los satélites meteorológicos llevan instalados radiómetros que actúan en las longitudes de onda visible e infrarroja del espectro electromagnético. Los satélites geoestacionarios operativos en la actualidad reciben información de 3 bandas de radiación electromagnética (visible, infrarrojo medio e infrarrojo térmico), mientras que los satélites meteorológicos de órbita polar suelen manejar 5 bandas o canales de radiación (dos canales en el visible, dos en el infrarrojo térmico y uno en el infrarrojo cercano). Cada uno de ellos con posibilidades diferentes para la investigación climática. En las imágenes visibles (0,5-0,9 um en el espectro electromagnético) lo que aparece blanco o claro tiene ese tono en la realidad, siendo, por tanto, nubes, nieblas, superficies nevadas o sectores desérticos muy claros. Su inconveniente es que ofrecen sólo información durante el día, puesto que durante la noche resultan totalmente oscuras. Las imágenes infrarrojas (entre 10,5 y 12,5 um o infrarrojo térmico) son mapas térmicos o de contrastes de temperatura de los cuerpos observados. En ellas los tonos oscuros corresponden a superficies calientes y los tonos claros a superficies frías. Son imágenes particularmente idóneas para detectar niveles nubosos, dado que captan perfectamente las diferencias térmicas que corresponden a distintas altitudes, resultando muy apropiadas para el estudio de nubes convectivas. Por último, las imágenes del infrarrojo medio, conocidas como imágenes de “vapor de agua” (5,7 a 7,1 um) puesto que esta banda espectral se ve fuertemente absorbida por el vapor de agua, son representativas de la humedad en la capa troposférica comprendida entre 500 y 300 hPa.
Las actuales unidades de satélite geoestacionario METEOSAT-5 y GMS-5 permiten obtener nuevos productos de gran interés para los estudios climáticos, entre ellos imágenes de alta resolución con indicación de dirección de viento en superficie mediante el tratamiento de imágenes originales infrarrojas y visibles (High Resolution Visible Wind product).
Las imágenes proporcionadas por los satélites meteorológicos son fuentes ”dinámicas” de la climatología y meteorología, dada la inmediatez de su disposición para el investigador del tiempo y clima. Los satélites meteorológicos de próxima generación mejorarán la resolución espacial y temporal, incluyendo nuevos canales de información que contribuirán a la mejora de los estudios atmosféricos. El futuro de los programas de satélites meteorológicos se ofrece en el cuadro adjunto.
Enlace permanente: Satélites meteorológicos - Fecha de creación: 2018-02-25