Glosario Ornitología / Término
(Genética) 1.- Sistema de tripletes de nucleótidos (codones) del ADN y del ARN que dictan la secuencia de aminoácidos de las proteínas; excepto en el caso de las tres señales de terminación, cada codón específica uno de los 20 aminoácidos. 2.- Es el conjunto de normas por las que la información codificada en el material genético (secuencias de ADN o ARN) se traduce en proteínas (secuencias de aminoácidos) en las células vivas. El código define la relación entre secuencias de tres nucleótidos, llamadas codones, y aminoácidos. Un codón se corresponde con un aminoácido específico. El ARN se basa en transportar un mensaje del ADN a la molécula correspondiente
La secuencia del material genético se compone de cuatro bases nitrogenadas distintas, que tienen una función equivalente a letras en el código genético: adenina (A), timina (T), guanina (G) y citosina (C) en el ADN y adenina (A), uracilo (U), guanina (G) y citosina (C) en el ARN. Debido a esto, el número de codones posibles es 64, de los cuales 61 codifican aminoácidos (siendo además uno de ellos el codón de inicio, AUG) y los tres restantes son sitios de parada (UAA, llamado ocre; UAG, llamado ámbar; UGA, llamado ópalo). La secuencia de codones determina la secuencia aminoacídica de una proteína en concreto, que tendrá una estructura y una función específicas.
El código genético es compartido por todos los organismos conocidos, incluyendo virus y organelos, aunque pueden aparecer pequeñas diferencias. Así, por ejemplo, el codón UUU codifica el aminoácido fenilalanina tanto en bacterias, como en arqueas y en eucariontes. Este hecho indica que el código genético ha tenido un origen único en todos los seres vivos conocidos.
Ningún codón codifica más de un aminoácido, ya que, de no ser así, conllevaría problemas considerables para la síntesis de proteínas específicas para cada gen. Tampoco presenta solapamiento: los tripletes se hallan dispuesto de manera lineal y continua, de manera que entre ellos no existan comas ni espacios y sin compartir ninguna base nitrogenada. Su lectura se hace en un solo sentido (5' - 3'), desde el codón de iniciación hasta el codón de parada. Sin embargo, en un mismo ARNm pueden existir varios codones de inicio, lo que conduce a la síntesis de varios polipéptidos diferentes a partir del mismo transcrito.
El código genético tiene redundancia pero no ambigüedad (ver tablas de codones). Por ejemplo, aunque los codones GAA y GAG especifican los dos el ácido glutámico (redundancia), ninguno específica otro aminoácido (no ambigüedad). Los codones que codifican un aminoácido pueden diferir en alguna de sus tres posiciones, por ejemplo, el ácido glutámico se específica por GAA y GAG (difieren en la tercera posición), el aminoácido leucina se específica por los codones UUA, UUG, CUU, CUC, CUA y CUG (difieren en la primera o en la tercera posición), mientras que en el caso de la serina, se específica por UCA, UCG, UCC, UCU, AGU, AGC (difieren en la primera, segunda o tercera posición).
De una posición de un codón se dice que es cuatro veces degenerada si con cualquier nucleótido en esta posición se específica el mismo aminoácido. Por ejemplo, la tercera posición de los codones de la glicina (GGA, GGG, GGC, GGU) es cuatro veces degenerada, porque todas las sustituciones de nucleótidos en este lugar son sinónimos; es decir, no varían el aminoácido. Sólo la tercera posición de algunos codones puede ser cuatro veces degenerada. Se dice que una posición de un codón es dos veces degenerada si sólo dos de las cuatro posibles sustituciones de nucleótidos especifican el mismo aminoácido. La degeneración aparece porque el código genético designa 20 aminoácidos y la señal parada. Debido a que hay cuatro bases, los codones en triplete se necesitan para producir al menos 21 códigos diferentes. Por ejemplo, si hubiera dos bases por codón, entonces sólo podrían codificarse 16 aminoácidos (4²=16). Y dado que al menos se necesitan 21 códigos, 4³ da 64 codones posibles, indicando que debe haber degeneración.
Esta propiedad del código genético lo hacen más tolerante a los fallos en mutaciones puntuales. Por ejemplo, en teoría, los codones cuatro veces degenerados pueden tolerar cualquier mutación puntual en la tercera posición, aunque el codón de uso sesgado restringe esto en la práctica en muchos organismos; los dos veces degenerados pueden tolerar una de las tres posibles mutaciones puntuales en la tercera posición. Debido a que las mutaciones de transición (purina a purina o pirimidina a pirimidina) son más probables que las de transversión (purina a pirimidina o viceversa), la equivalencia de purinas o de pirimidinas en los lugares dobles degenerados añade una tolerancia a los fallos complementaria.
Enlace permanente: Código genético - Fecha de creación: 2013-06-02