Glosario Topología Lacaniana / Término

Teoremas de Punto fijo

Se conoce con este nombre a diversos teoremas que aseguran, bajo diferentes hipótesis, la existencia de al menos un punto fijo en cierta función f, es decir, un elemento x tal que f(x) = x. Estos teoremas tienen aplicaciones en variados campos. Uno de los más conocidos se debe al holandés L.E.J.Brouwer, que dice que toda función continua de una bola n–dimensional cerrada en sí misma tiene al menos un punto fijo. Un resultado similar, muy interesante, dice que toda transformación continua de la esfera usual en sí misma (y en general, de cualquier esfera de dimensión par) tiene al menos un punto fijo o bien un punto antipodal, es decir, tal que el valor de f(x) resulta ser el de la antípoda de x.

Enlace permanente: Teoremas de Punto fijo - Fecha de creación: 2014-11-30


< Superficie de revolución Glosario Topología Lacaniana Topología >

Glosarios especializados

Este sitio web es posible gracias a que muestra publicidad en línea a sus visitantes.
Por favor, ayude a que pueda seguir existiendo deshabilitando su bloqueador de anuncios (adblocker).
Muchas gracias.